LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlled Continuous Patterning of Spherical Stainless Steel by Multi-Axis Linkage Laser Milling

Photo from wikipedia

While laser surface texturing is promising for the fabrication of planar surface microstructures, the continuously patterning with micrometer accuracy of non-planar surface on miniature parts with large curvature by laser… Click to show full abstract

While laser surface texturing is promising for the fabrication of planar surface microstructures, the continuously patterning with micrometer accuracy of non-planar surface on miniature parts with large curvature by laser ablation is challenging. In the present work, we demonstrate the feasibility of applying the proposed multi-axis laser milling in continuous patterning of 25 mm diameter spherical stainless steel with high uniformity and precision, based on a strategy of simultaneously adjusting the position and the posture of laser-surface interaction point for enabling the constant coincidence of laser beam with ablated surface normal. Specifically, a miniaturized five-axis platform for controlling workpiece motion with high degree-of-freedom is designed and integrated with a fixed nanosecond pulsed laser beam operating at 1064 nm. The precise path of laser-surface interaction point is derived based on the projection and transformation of pre-determined planar pattern on spherical surface. Meanwhile, a virtual prototype of the multi-axis laser milling with embedded interpolation algorithm is established, which enables the generation of NC codes for subsequent laser milling experiments. Furthermore, the sampling of laser processing parameters particularly for spherical surface is carried out. Finally, complex patterns are continuously structured on the spherical surface by employing the proposed multi-axis laser milling method, and subsequent characterization demonstrates both long range uniformity and local high accuracy of the fabricated patterns. Current work provides a feasible method for the continuous laser surface texturing of non-planar surfaces for miniature parts with large curvature.

Keywords: laser; laser surface; surface; multi axis; laser milling

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.