The traditional quantitative analysis methods of ascorbic acid (AA), which require expensive equipment, a large amount of samples and professional technicians, are usually complex and time-consuming. A low-cost and high-efficiency… Click to show full abstract
The traditional quantitative analysis methods of ascorbic acid (AA), which require expensive equipment, a large amount of samples and professional technicians, are usually complex and time-consuming. A low-cost and high-efficiency AA detection device is reported in this work. It integrates a three-electrode sensor module prepared by screen printing technology, and a microfluidic chip with a finger-actuated micropump peeled from the liquid-crystal display (LCD) 3D printing resin molds. The AA detection process on this device is easy to operate. On-chip detection has been demonstrated to be 2.48 times more sensitive than off-chip detection and requires only a microliter-scale sample volume, which is much smaller than that required in traditional electrochemical methods. Experiments show that the sample and buffer can be fully mixed in the microchannel, which is consistent with the numerical simulation results wherein the mixing efficiency is greater than 90%. Commercially available tablets and beverages are also tested, and the result shows the reliability and accuracy of the device, demonstrating its broad application prospects in the field of point-of-care testing (POCT).
               
Click one of the above tabs to view related content.