LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological and Physico-Chemical Properties of Composite Layers Based on Magnesium-Doped Hydroxyapatite in Chitosan Matrix

Photo from wikipedia

In the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (Ca10−xMgx(PO4)6(OH)2; xMg = 0, 0.08 and… Click to show full abstract

In the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (Ca10−xMgx(PO4)6(OH)2; xMg = 0, 0.08 and 0.3; HApCh, 8MgHApCh and 30MgHApCh). The MgHApCh composite layers were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) techniques. The in vitro biological evaluation included the assessment of their cytotoxicity on MG63 osteoblast-like cells and antifungal activity against Candida albicans ATCC 10231 fungal cell lines. The results of the physico-chemical characterization highlighted the obtaining of uniform and homogeneous composite layers. In addition, the biological assays demonstrated that the increase in the magnesium concentration in the samples enhanced the antifungal effect but also decreased their cytocompatibility. However, for certain optimal magnesium ion concentrations, the composite layers presented both excellent biocompatibility and antifungal properties, suggesting their promising potential for biomedical applications in both implantology and dentistry.

Keywords: composite layers; magnesium; doped hydroxyapatite; spectroscopy; based magnesium; magnesium doped

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.