In this work, we investigate the effect of temperature on the electrical characteristics of Al/SiO2/n++-Si RRAM devices. We study the electroforming process and show that forming voltage and time-to-breakdown are… Click to show full abstract
In this work, we investigate the effect of temperature on the electrical characteristics of Al/SiO2/n++-Si RRAM devices. We study the electroforming process and show that forming voltage and time-to-breakdown are well described by Weibull distribution. Experimental current–voltage characteristics of Al-SiO2-(n++Si) structures are presented and discussed at different temperatures. We show that some intermediate resistance states can be observed at higher temperatures. In our analysis, we identify Space Charge Limited Conduction (SCLC) as the dominating transport mechanism regardless of the operating temperature.
               
Click one of the above tabs to view related content.