LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Dielectric Elastomer Actuator-Driven Vibro-Impact Crawling Robot

Photo from wikipedia

Over the last decade, many bio-inspired crawling robots have been proposed by adopting the principle of two-anchor crawling or anisotropic friction-based vibrational crawling. However, these robots are complicated in structure… Click to show full abstract

Over the last decade, many bio-inspired crawling robots have been proposed by adopting the principle of two-anchor crawling or anisotropic friction-based vibrational crawling. However, these robots are complicated in structure and vulnerable to contamination, which seriously limits their practical application. Therefore, a novel vibro-impact crawling robot driven by a dielectric elastomer actuator (DEA) is proposed in this paper, which attempts to address the limitations of the existing crawling robots. The novelty of the proposed vibro-impact robot lies in the elimination of anchoring mechanisms or tilted bristles in conventional crawling robots, hence reducing the complexity of manufacturing and improving adaptability. A comprehensive experimental approach was adopted to characterize the performance of the robot. First, the dynamic response of the DEA-impact constraint system was characterized in experiments. Second, the performance of the robot was extensively studied and the fundamental mechanisms of the vibro-impact crawling locomotion were analyzed. In addition, effects of several key parameters on the robot’s velocity were investigated. It is demonstrated that our robot can realize bidirectional motion (both forward and backward) by simple tuning of the key control parameters. The robot demonstrates a maximum forward velocity of 21.4 mm/s (equivalent to 0.71 body-length/s), a backward velocity of 16.9 mm/s, and a load carrying capacity of 9.5 g (equivalent to its own weight). The outcomes of this paper can offer guidelines for high-performance crawling robot designs, and have potential applications in industrial pipeline inspections, capsule endoscopes, and disaster rescues.

Keywords: impact crawling; crawling robot; dielectric elastomer; robot; impact; vibro impact

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.