LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulation of Silicon Surface Barrier Detector with PN Junction Guard Rings to Improve the Breakdown Voltage

Photo from wikipedia

Silicon surface barrier detectors (SSBDs) are normally used to detect high-energy particles due to their excellent properties. For better charge collection efficiency (CCE), the SSBD device should be operated at… Click to show full abstract

Silicon surface barrier detectors (SSBDs) are normally used to detect high-energy particles due to their excellent properties. For better charge collection efficiency (CCE), the SSBD device should be operated at higher reverse voltages, but this can lead to device breakdown. Therefore, we used a PN junction as a guard ring to increase the breakdown voltage of the SSBD. The structures of two SSBD devices are drawn and simulated in this work. Compared with a conventional SSBD (c-SSBD), the use of a PN junction as a guard ring for an SSBD (Hybrid-SSBD) achieves higher breakdown voltages, of over 1500 V under reverse bias. This means that Hybrid-SSBD devices can operate at higher reverse voltages for better charge collection efficiency (CCE) to detect high-energy particles. Then, we simulated the different structure parameters of the Hybrid-SSBD guard rings. Among them, the doping depth and gap width of the guard ring (between the innermost guard ring and the active area) have a greater impact on the breakdown voltage. Finally, for Hybrid-SSBD devices, the optimal characteristics of the guard ring were 1 × 1019 cm−3 doping concentration, 1 μm doping depth, and innermost guard ring width and gap width of 5 μm and 3 μm, respectively.

Keywords: junction guard; guard; guard ring; breakdown voltage; ssbd

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.