LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Ku-Band Miniaturized System-in-Package Using HTCC for Radar Transceiver Module Application

Photo from wikipedia

This paper introduces a miniaturized system in package (SIP) for a Ku-band four-channel RF transceiver front-end. The SIP adopts the packaging scheme of an inner heat-dissipation gasket and multi-layer substrate… Click to show full abstract

This paper introduces a miniaturized system in package (SIP) for a Ku-band four-channel RF transceiver front-end. The SIP adopts the packaging scheme of an inner heat-dissipation gasket and multi-layer substrate in the high temperature co-fired ceramics (HTCC) shell with a metal heat sink at the bottom. The gasket effectively solves the heat-dissipation problem of high-power transceiver chips, and the multi-layer substrate achieves the interconnection between multiple chips. Within the limited size of 14.0 × 14.0 × 2.5 mm3, the SIP integrates five bidirectional amplifier chips, an amplitude-phase control multi-function chip, and two power modulation chips to realize the Ku-band four-channel RF transceiver front-end. Transmitting power over 0.5 W (27dBm) and receiving noise figure of 3.4 dB are achieved in the Ku-band. The efficient heat dissipation, high air tightness, and excellent integration are simultaneously realized in this SIP. The measurement results show that the performance is stable in the receiving and transmitting states, and the SIP based on HTCC technology has specific prospects for radar transceiver application.

Keywords: system package; transceiver; radar transceiver; miniaturized system

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.