LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Glass-to-Glass Fusion Bonding Quality and Strength Evaluation with Time, Applied Force, and Heat

Photo by jontyson from unsplash

A bonding process was developed for glass-to-glass fusion bonding using Borofloat 33 wafers, resulting in high bonding yield and high flexural strength. The Borofloat 33 wafers went through a two-step… Click to show full abstract

A bonding process was developed for glass-to-glass fusion bonding using Borofloat 33 wafers, resulting in high bonding yield and high flexural strength. The Borofloat 33 wafers went through a two-step process with a pre-bond and high-temperature bond in a furnace. The pre-bond process included surface activation bonding using O2 plasma and N2 microwave (MW) radical activation, where the glass wafers were brought into contact in a vacuum environment in an EVG 501 Wafer Bonder. The optimal hold time in the EVG 501 Wafer bonder was investigated and concluded to be a 3 h hold time. The bonding parameters in the furnace were investigated for hold time, applied force, and high bonding temperature. It was concluded that the optimal parameters for glass-to-glass Borofloat 33 wafer bonding were at 550 °C with a hold time of 1 h with 550 N of applied force.

Keywords: glass glass; time; applied force; glass fusion; glass

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.