LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Micro Light Flow Controller on a Programmable Waveguide Engine

Photo by jawfox_photography from unsplash

A light flow controller that can regulate the three-port optical power in both lossless and lossy modus is realized on a programmable multimode waveguide engine. The microheaters on the waveguide… Click to show full abstract

A light flow controller that can regulate the three-port optical power in both lossless and lossy modus is realized on a programmable multimode waveguide engine. The microheaters on the waveguide chip mimic the tunable “pixels” that can continuously adjust the local refractive index. Compared to the conventional method where the tuning takes place only on single-mode waveguides, the proposed structure is more compact and requires less electrodes. The local index changes in a multimode waveguide can alter the mode numbers, field distribution, and propagation constants of each individual mode, all of which can alter the multimode interference pattern significantly. However, these changes are mostly complex and not governed by analytical equations as in the single-mode case. Though numerical simulations can be performed to predict the device response, the thermal and electromagnetic computing involved is mostly time-consuming. Here, a multi-level search program is developed based on experiments only. It can reach a target output in real time by adjusting the microheaters collectively and iteratively. It can also jump over local optima and further improve the cost function on a global level. With only a simple waveguide structure and four microheaters, light can be routed freely into any of the three output ports with arbitrary power ratios, with and without extra attenuation. This work may trigger new ideas in developing compact and efficient photonic integrated devices for applications in optical communication and computing.

Keywords: flow controller; mode; waveguide engine; light flow

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.