LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure and Photoluminescence of WO3-x Aggregates Tuned by Surfactants

Photo from wikipedia

The optoelectronic properties of transition metal oxide semiconductors depend on their oxygen vacancies, nanostructures and aggregation states. Here, we report the synthesis and photoluminescence (PL) properties of substoichiometric tungsten oxide… Click to show full abstract

The optoelectronic properties of transition metal oxide semiconductors depend on their oxygen vacancies, nanostructures and aggregation states. Here, we report the synthesis and photoluminescence (PL) properties of substoichiometric tungsten oxide (WO3-x) aggregates with the nanorods, nanoflakes, submicro-spherical-like, submicro-spherical and micro-spherical structures in the acetic acid solution without and with the special surfactants (butyric or oleic acids). Based on theory on the osmotic potential of polymers, we demonstrate the structural change of the WO3-x aggregates, which is related to the change of steric repulsion caused by the surfactant layers, adsorption and deformation of the surfactant molecules on the WO3-x nanocrystals. The WO3-x aggregates generate multi-color light, including ultraviolet, blue, green, red and near-infrared light caused by the inter-band transition and defect level-specific transition as well as the relaxation of polarons. Compared to the nanorod and nanoflake WO3-x aggregates, the PL quenching of the submicro-spherical-like, submicro-spherical and micro-spherical WO3-x aggregates is associated with the coupling between the WO3-x nanoparticles and the trapping centers arising from the surfactant molecules adsorbed on the WO3-x nanoparticles.

Keywords: wo3; structure photoluminescence; wo3 aggregates; submicro spherical; photoluminescence wo3

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.