LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal Design of a Multipole-Electromagnet Robotic Platform for Ophthalmic Surgery

Photo from wikipedia

The aim of this study was to design a multipole-electromagnet robotic platform named OctoRob. This platform provides a minimally invasive means for targeted therapeutic interventions in specific intraocular areas. OctoRob… Click to show full abstract

The aim of this study was to design a multipole-electromagnet robotic platform named OctoRob. This platform provides a minimally invasive means for targeted therapeutic interventions in specific intraocular areas. OctoRob is capable of generating both appropriate magnetic fields and gradients. The main scientific objectives were: (i) To propose an optimal reconfigurable arrangement of electromagnets suitable for ophthalmic interventions. (ii) To model, design and implement a one-degree-of-freedom robotic arm connected with an electromagnet in order to optimize the generation of magnetic fields and gradients. (iii) To evaluate the magnetic performances of the OctoRob platform, including different tilted angles. The results show that OctoRob platform has great potential to be applied for ophthalmic surgery.

Keywords: platform; multipole electromagnet; electromagnet robotic; design; robotic platform; design multipole

Journal Title: Micromachines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.