LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of Device Characteristics of Feedback Field-Effect Transistors Using TCAD-Augmented Machine Learning

Photo by glenncarstenspeters from unsplash

In this study, the device characteristics of silicon nanowire feedback field-effect transistors were predicted using technology computer-aided design (TCAD)-augmented machine learning (TCAD-ML). The full current–voltage (I-V) curves in forward and… Click to show full abstract

In this study, the device characteristics of silicon nanowire feedback field-effect transistors were predicted using technology computer-aided design (TCAD)-augmented machine learning (TCAD-ML). The full current–voltage (I-V) curves in forward and reverse voltage sweeps were predicted well, with high R-squared values of 0.9938 and 0.9953, respectively, by using random forest regression. Moreover, the TCAD-ML model provided high prediction accuracy not only for the full I-V curves but also for the important device features, such as the latch-up and latch-down voltages, saturation drain current, and memory window. Therefore, this study demonstrated that the TCAD-ML model can substantially reduce the computational time for device development compared with conventional simulation methods.

Keywords: field effect; tcad augmented; feedback field; device characteristics; effect transistors; device

Journal Title: Micromachines
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.