LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ScAlN Film-Based Piezoelectric Micromechanical Ultrasonic Transducers with Dual-Ring Structure for Distance Sensing

Photo by nickkarvounis from unsplash

Piezoelectric micromechanical ultrasonic transducers (pMUTs) are new types of distance sensors with great potential for applications in automotive, unmanned aerial vehicle, robotics, and smart homes. However, previously reported pMUTs are… Click to show full abstract

Piezoelectric micromechanical ultrasonic transducers (pMUTs) are new types of distance sensors with great potential for applications in automotive, unmanned aerial vehicle, robotics, and smart homes. However, previously reported pMUTs are limited by a short sensing distance due to lower output sound pressure. In this work, a pMUT with a special dual-ring structure based on scandium-doped aluminum nitride (ScAlN) is proposed. The combination of a dual-ring structure with pinned boundary conditions and a high piezoelectric performance ScAlN film allows the pMUT to achieve a large dynamic displacement of 2.87 μm/V and a high electromechanical coupling coefficient (kt2) of 8.92%. The results of ranging experiments show that a single pMUT achieves a distance sensing of 6 m at a resonant frequency of 91 kHz, the farthest distance sensing registered to date. This pMUT provides surprisingly fertile ground for various distance sensing applications.

Keywords: distance sensing; dual ring; distance; ring structure

Journal Title: Micromachines
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.