LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast Microfluidic PCR Thermocycler for Nucleic Acid Amplification

Photo by sharonmccutcheon from unsplash

The polymerase chain reaction (PCR) is essential in nucleic acid amplification tests and is widely used in many applications such as infectious disease detection, tumor screening, and food safety testing;… Click to show full abstract

The polymerase chain reaction (PCR) is essential in nucleic acid amplification tests and is widely used in many applications such as infectious disease detection, tumor screening, and food safety testing; however, most PCR devices have inefficient heating and cooling ramp rates for the solution, which significantly limit their application in special scenarios such as hospital emergencies, airports, and customs. Here, we propose a temperature control strategy to significantly increase the ramp rates for the solution temperature by switching microfluidic chips between multiple temperature zones and excessively increasing the temperature difference between temperature zones and the solution; accordingly, we have designed an ultrafast thermocycler. The results showed that the ramp rates of the solution temperature are a linear function of temperature differences within a range, and a larger temperature difference would result in faster ramp rates. The maximum heating and cooling ramp rates of the 25 μL solution reached 24.12 °C/s and 25.28 °C/s, respectively, and the average ramp rate was 13.33 °C/s, 6–8 times higher than that of conventional commercial PCR devices. The thermocycler achieved 9 min (1 min pre-denaturation + 45 PCR cycles) ultrafast nucleic acid amplification, shortening the time by 92% compared to the conventional 120 min nucleic acid amplification, and has the potential to be used for rapid nucleic acid detection.

Keywords: temperature; ramp rates; acid amplification; nucleic acid

Journal Title: Micromachines
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.