LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SiCNFe Ceramics as Soft Magnetic Material for MEMS Magnetic Devices: A Mössbauer Study

Photo from wikipedia

Polymer-derived SiCNFe ceramics is a prospective material that can be used as soft magnets in MEMS magnetic applications. The optimal synthesis process and low-cost appropriate microfabrication should be developed for… Click to show full abstract

Polymer-derived SiCNFe ceramics is a prospective material that can be used as soft magnets in MEMS magnetic applications. The optimal synthesis process and low-cost appropriate microfabrication should be developed for best result. Homogeneous and uniform magnetic material is required for developing such MEMS devices. Therefore, the knowledge of exact composition of SiCNFe ceramics is very important for the microfabrication of magnetic MEMS devices. The Mössbauer spectrum of SiCN ceramics, doped with Fe (III) ions, and annealed at 1100 °C, was investigated at room temperature to accurately establish the phase composition of Fe-containing magnetic nanoparticles, which were formed in this material at pyrolysis and which determine their magnetic properties. The analysis of Mössbauer data shows the formation of several Fe-containing magnetic nanoparticles in SiCN/Fe ceramics, such as α-Fe, FexSiyCz, traces of Fe-N and paramagnetic Fe3+ with octahedral oxygen environment. The presence of iron nitride and paramagnetic Fe3+ ions shows that the pyrolysis process was not completed in SiCNFe ceramics annealed at 1100 °C. These new observations confirm the formation of different Fe-containing nanoparticles with complex composition in SiCNFe ceramic composite.

Keywords: mems magnetic; material; magnetic material; devices ssbauer; sicnfe ceramics

Journal Title: Micromachines
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.