LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving Performance of Al2O3/AlN/GaN MIS HEMTs via In Situ N2 Plasma Annealing

Photo from wikipedia

A novel monocrystalline AlN interfacial layer formation method is proposed to improve the device performance of the fully recessed-gate Al2O3/AlN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors (MIS-HEMTs), which is achieved by… Click to show full abstract

A novel monocrystalline AlN interfacial layer formation method is proposed to improve the device performance of the fully recessed-gate Al2O3/AlN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors (MIS-HEMTs), which is achieved by plasma-enhanced atomic layer deposition (PEALD) and in situ N2 plasma annealing (NPA). Compared with the traditional RTA method, the NPA process not only avoids the device damage caused by high temperatures but also obtains a high-quality AlN monocrystalline film that avoids natural oxidation by in situ growth. As a contrast with the conventional PELAD amorphous AlN, C-V results indicated a significantly lower interface density of states (Dit) in a MIS C-V characterization, which could be attributed to the polarization effect induced by the AlN crystal from the X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) characterizations. The proposed method could reduce the subthreshold swing, and the Al2O3/AlN/GaN MIS-HEMTs were significantly enhanced with ~38% lower on-resistance at Vg = 10 V. What is more, in situ NPA provides a more stable threshold voltage (Vth) after a long gate stress time, and ΔVth is inhibited by about 40 mV under Vg,stress = 10 V for 1000 s, showing great potential for improving Al2O3/AlN/GaN MIS-HEMT gate reliability.

Keywords: aln gan; mis hemts; aln; gan mis; al2o3 aln

Journal Title: Micromachines
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.