LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of MEMS Multi-Mode Electrostatic Energy Harvester Based on the SOI Process

Photo from wikipedia

Multi-vibrational-mode electrostatic energy harvesters are designed and micro-machined utilizing a simple silicon-on-insulator (SOI) wafer-based process. Enhanced adaptability to various vibrational environments is achieved in the proposed design by using serpentine… Click to show full abstract

Multi-vibrational-mode electrostatic energy harvesters are designed and micro-machined utilizing a simple silicon-on-insulator (SOI) wafer-based process. Enhanced adaptability to various vibrational environments is achieved in the proposed design by using serpentine springs attached to the fishbone-shaped inertial mass. The experimental results show that the developed device could convert an input vibration of 6 g at 1272 Hz to 2.96, 3.28, and 2.30 μW for different vibrational directions of 0°, 30°, and 45° with respect to a reference direction, respectively, when all serpentine springs are identical. An alternative device design using serpentine springs with different stiffnesses between x- and y-axes exhibited resonance frequencies at 1059 and 1635 Hz for an input vibrational direction of 45° and acceleration amplitude of 4 g, successfully generating 0.723 and 0.927 μW of electrical power at each resonance, respectively.

Keywords: serpentine springs; development mems; process; electrostatic energy; mode electrostatic

Journal Title: Micromachines
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.