This study proposed a rapid prototyping fabrication method for micromotors that allowed us to develop both 1 mm and 1.5 mm diameter permanent-magnet synchronous motors (PMSMs) with an optical rotary… Click to show full abstract
This study proposed a rapid prototyping fabrication method for micromotors that allowed us to develop both 1 mm and 1.5 mm diameter permanent-magnet synchronous motors (PMSMs) with an optical rotary encoder. First, an integrated electroforming method was proposed for combining stator housing and flexible print circuit (FPC) coils to ease the manufacturing and assembly of micromotor components. This is particularly useful in the production of prototypes or small volumes of units. Second, an optical encoder was used to detect the rotational angle by means of a reflective code disk, an optical fiber, and a photo-detector. The micromotor was built with a code disk and an optical fiber. The code disk was designed to match the optical fiber and was made by photolithography and sputtering. Both the 1 mm and 1.5 mm diameter motors successfully achieved a rotational speed over 20,000 RPM and due to a 50 µm diameter optical fiber core, the encoders showed a resolution of 12 and 18 pulses per revolution (PPR), respectively.
               
Click one of the above tabs to view related content.