Optical tweezers, formed by a highly focused laser beam, have intriguing applications in biology and physics. Inspired by molecular rotors, numerous optical beams and artificial particles have been proposed to… Click to show full abstract
Optical tweezers, formed by a highly focused laser beam, have intriguing applications in biology and physics. Inspired by molecular rotors, numerous optical beams and artificial particles have been proposed to build optical tweezers trapping microparticles, and extensive experiences have been learned towards constructing precise, stable, flexible and controllable micromachines. The mechanism of interaction between particles and localized light fields is quite different for different types of particles, such as metal particles, dielectric particles and Janus particles. In this article, we present a comprehensive overview of the latest development on the fundamental and application of optical trapping. The emphasis is placed on controllable mechanical motions of particles, including rotation, translation and their mutual coupling under the optical forces and torques created by a wide variety of optical tweezers operating on different particles. Finally, we conclude by proposing promising directions for future research.
               
Click one of the above tabs to view related content.