LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

First Principles Calculation of the Stability of Iron Bearing Carbonates at High Pressure Conditions

Photo from wikipedia

Carbonate minerals such as ferromagnesite (Mg,Fe)CO 3 are suggested to be a possible major deep-carbon host in the lower mantle, because ferromagnesite is possibly stabilized by Fe spin crossover under… Click to show full abstract

Carbonate minerals such as ferromagnesite (Mg,Fe)CO 3 are suggested to be a possible major deep-carbon host in the lower mantle, because ferromagnesite is possibly stabilized by Fe spin crossover under pressure. However, the behavior of Fe-bearing carbonates under lower mantle pressure conditions has not been suitably examined thus far. Thus, in this study, we investigate the high-pressure stability of ferromagnesite and possible high-pressure structures with the chemical composition of (Mg 0.833 Fe 0.167 )CO 3 via first principles calculation using internally consistent local density approximation with Hubbard parameter (LDA+U) method, which can more accurately account for the electronic state of Fe than the LDA and generalized gradient approximation (GGA) approaches. The enthalpy values obtained via our calculations suggest that (Mg 0.833 Fe 0.167 )CO 3 undergoes phase transition from the R 3 ¯ c structure (high spin) to the P 1 ¯ (high spin) at 50 GPa, and to C2/m (high-spin) structure above 80 GPa, under static 0 K conditions. Therefore, no spin transitions in these carbonate minerals is expected under the lower mantle pressure conditions.

Keywords: pressure conditions; principles calculation; bearing carbonates; high pressure; first principles; pressure

Journal Title: Minerals
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.