The early Paleozoic is a crucial period in the formation and evolution of the Eastern Kunlun Orogenic Belt (EKOB), and is of great significance for understanding the evolutionary history of… Click to show full abstract
The early Paleozoic is a crucial period in the formation and evolution of the Eastern Kunlun Orogenic Belt (EKOB), and is of great significance for understanding the evolutionary history of the Proto-Tethyan Ocean. This paper presents new petrography, geochemistry, zircon U–Pb dating, and Lu–Hf isotopic research on the Yuejingshan gabbro from the eastern segment of the EKOB. Zircon U–Pb data suggests that the gabbro formed in the Early Silurian (435 ± 2 Ma). All samples have relatively low TiO2 contents (0.45–2.97%), widely varying MgO (6.58–8.41%) and Mg# (58–65) contents, and are rich in large ion lithophile elements (LILE such as Rb, Ba, Th, and U) and light rare earth elements (LREE). This indicates that it has a similar geochemical composition to island arc basalt. The major element features indicate that the formation of this gabbro underwent fractional crystallization of clinopyroxene, olivine, and plagioclase. The depletion of high field strength elements (HFSE, such as Nb, Ta, and Ti), and a slightly positive Hf isotope (with eHf(t) ranging from 1.13 to 2.45) may be related to the partial melting of spinel-bearing peridotite, led by slab fluid metasomatism. The gabbro likely represents magmatic records of the latest period of the early Paleozoic oceanic crust subduction in the Eastern Kunlun. Therefore, the final closure of the Proto-Tethyan Ocean and the beginning of collisional orogeny occurred before the Early Silurian.
               
Click one of the above tabs to view related content.