LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uranium Deposits of Erlian Basin (China): Role of Carbonaceous Debris Organic Matter and Hydrocarbon Fluids on Uranium Mineralization

Photo from wikipedia

The relationship of sedimentary organic matter, oil-gas and sandstone-type uranium (U) deposits is the key problem of U-mineralization. Whether migrate hydrocarbons participate in U-mineralization is still a controversy. Typical U… Click to show full abstract

The relationship of sedimentary organic matter, oil-gas and sandstone-type uranium (U) deposits is the key problem of U-mineralization. Whether migrate hydrocarbons participate in U-mineralization is still a controversy. Typical U deposits of the Erlian Basin in northeast China have been investigated through detailed petrography, mineralogical, micro spectroscopic, organic geochemical and C-isotope studies. Petrographic observations, Microscopic Laser Raman Spectroscopic, Infrared Spectroscopic and Scanning Electron Microscope analyses indicated there are three types of organic matter (including carbonaceous debris and migrated hydrocarbons). A significant amount of uranium was associated with pyrites, clay minerals and carbonaceous debris organic matter, either coexisted with hydrocarbon fluids. There are at least two stages mineralization events, stage I is related to sedimentary organic matter (syngenetic pre-enrichment stage), and stage II is related to mobile hydrocarbon fluids (main mineralization stage). Therefore, our results support that migrated hydrocarbons were involved as a reducing agent for the main uranium mineralization after synsedimentary mineralization.

Keywords: organic matter; mineralization; carbonaceous debris; hydrocarbon fluids

Journal Title: Minerals
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.