LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Methods of Extracting TiO2 and Other Related Compounds from Ilmenite

Photo from wikipedia

Although ilmenite and rutile are extensively used to extract TiO2 at the industrial level, through the sulphate and chloride processes, they can also be recognized to possess the potential to… Click to show full abstract

Although ilmenite and rutile are extensively used to extract TiO2 at the industrial level, through the sulphate and chloride processes, they can also be recognized to possess the potential to be employed as the raw material to synthesize other titanium compounds as well. The Pulmoddai mineral sand deposit in Sri Lanka is considered as a valuable resource containing pure ilmenite and can be used as a very good source of both titanium and iron. Because of the lower TiO2 content compared to rutile, processes, such as the Becher process, Laporte process and Kataoka process, have been developed to upgrade ilmenite into higher grade synthetic rutile. Additionally, research studies have been carried out to develop methods, such as the hydrochloride process, H3PO4/NH3 process, alkaline roasting process, aluminothermic reduction method, alkaline decomposition method, molten salt electroreduction method and magnesiothermic reduction method, to synthesize TiO2 and other related titanium compounds, such as titanium and iron oxides, composites and alloys, from naturally occurring ilmenite where these methods possess both rewards as well as drawbacks over the others.

Keywords: ilmenite methods; tio2 related; method; titanium; process

Journal Title: Minerals
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.