A natural barioferrite, BaFe3+12O19, from a larnite–schorlomite–gehlenite vein of paralava within gehlenite hornfels of the Hatrurim Complex at Har Parsa, Negev Desert, Israel, was investigated by Raman spectroscopy, electron probe… Click to show full abstract
A natural barioferrite, BaFe3+12O19, from a larnite–schorlomite–gehlenite vein of paralava within gehlenite hornfels of the Hatrurim Complex at Har Parsa, Negev Desert, Israel, was investigated by Raman spectroscopy, electron probe microanalysis, and single-crystal X-ray analyses acquired over the temperature range of 100–400 K. The crystals are up to 0.3 mm × 0.1 mm in size and form intergrowths with hematite, magnesioferrite, khesinite, and harmunite. The empirical formula of the barioferrite investigated is as follows: (Ba0.85Ca0.12Sr0.03)∑1(Fe3+10.72Al0.46Ti4+0.41Mg0.15Cu2+0.09Ca0.08Zn0.04Mn2+0.03Si0.01)∑11.99O19. The strongest bands in the Raman spectrum are as follows: 712, 682, 617, 515, 406, and 328 cm−1. The structure of natural barioferrite (P63/mmc, a = 5.8901(2) A, c = 23.1235(6) A, V = 694.75(4) A3, Z = 2) is identical with the structure of synthetic barium ferrite and can be described as an interstratification of two fundamental blocks: spinel-like S-modules with a cubic stacking sequence and R-modules that have hexagonal stacking. The displacement ellipsoids of the trigonal bipyramidal site show elongation along the [001] direction during heating. As a function of temperature, the mean apical Fe–O bond lengths increase, whereas the equatorial bond lengths decrease, which indicates dynamic disorder at the Fe2 site.
               
Click one of the above tabs to view related content.