LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Petrology of Chromitites in the Higashi-Akaishi Ultrahigh-Pressure (UHP) Peridotite Complex, Japan: Toward Understanding of General Features of the UHP Chromitites

Photo by hiro0718 from unsplash

Ultrahigh-pressure (UHP) chromitites containing UHP minerals such as coesite and diamond have been reported from some ophiolites in Tibet and the Polar Urals. Their nature, i.e., origin, P-T path and… Click to show full abstract

Ultrahigh-pressure (UHP) chromitites containing UHP minerals such as coesite and diamond have been reported from some ophiolites in Tibet and the Polar Urals. Their nature, i.e., origin, P-T path and abundance, however, are still controversial and left unclear. Here we describe chromitites in the Higashi-akaishi (HA) ultramafic complex in the Cretaceous Sanbagawa metamorphic belt, Japan, which experienced UHP condition (up to 3.8 GPa) at the peak metamorphism via subduction, in order to understand the nature of UHP chromitites. The HA peridotites typically contain garnets and are associated with eclogites, and their associated chromitites are expected to have experienced the UHP metamorphism. The Higashi-akaishi (HA) chromitites show banded to massive structures and are concordant to foliation of the surrounding peridotite. Chromian spinels in the chromitite and surrounding peridotites were sometimes fractured by deformation, and contain various inclusions, i.e., blade- and needle-like diopside lamellae, and minute inclusions of pyroxenes, olivine, and pargasite. The peculiar UHP minerals, such as coesite and diamond, have not been found under the microscope and the Raman spectrometer. Spinels in the HA chromitites show high Cr#s (0.7 to 0.85), and low Ti contents (<0.1 wt %), suggesting a genetic linkage to an arc magma. The HA chromitites share the basic petrographic and chemical features (i.e., diopside lamellae and arc-related spinel chemistry) with the UHP chromitites from Tibet and the Polar Urals. This suggests that some of the characteristics of the UHP chromitite can be obtained by compression, possibly via deep subduction, of low-P chromitite.

Keywords: pressure uhp; petrology; higashi akaishi; ultrahigh pressure; chromitites higashi; uhp chromitites

Journal Title: Minerals
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.