LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Abyssal Peridotite as a Component of Forearc Mantle: Inference from a New Mantle Xenolith Suite of Bankawa in the Southwest Japan Arc

Lithology and petrologic nature of the forearc mantle have been left unclear due to the very limited sampling to date. Here, we present petrological data on a forearc peridotite suite… Click to show full abstract

Lithology and petrologic nature of the forearc mantle have been left unclear due to the very limited sampling to date. Here, we present petrological data on a forearc peridotite suite obtained as xenoliths in an alkali basalt dike (7.5 Ma) from the Bankawa area in the Southwest Japan arc for our better understanding of the forearc mantle. The host alkali basalt is of asthenosphere origin, and passed through a slab window with slight chemical modification by the slab-derived component. The Bankawa peridotite suite is comprised of lherzolites, which contain various amounts of secondary phlogopite and were metasomatized to various degrees. The least metasomatized lherzolite exhibits Fo91 of olivine, Cr/(Cr + Al) = 0.3 of chromian spinel, and depletion of middle to light rare-earth elements in clinopyroxene, and is overall similar to an abyssal lherzolite. It had originally formed at the proto-Pacific Ocean and then was trapped at a eastern margin of Eurasian continent by initiation of subduction. The forearc mantle peridotite formed as a residue of proto-arc magma formation is depleted harzburgite as represented by the peridotites obtained from the forearc seafloor, but can be less depleted abyssal peridotite if being devoid of partial melting or reaction with magmas after entrapment.

Keywords: japan arc; abyssal peridotite; forearc mantle; southwest japan

Journal Title: Minerals
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.