LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geodynamic Evolution and Metallogeny of Archaean Structural and Compositional Complexes in the Northwestern Russian Arctic

Photo from wikipedia

This paper highlights the geodynamic evolution of the early Precambrian rock associations in the northwestern part of the Russian Arctic where the rocks are exposed in the Kola region (northeastern… Click to show full abstract

This paper highlights the geodynamic evolution of the early Precambrian rock associations in the northwestern part of the Russian Arctic where the rocks are exposed in the Kola region (northeastern Baltic Shield). The evolution is shown to predetermine the metallogenic potential of the area. It is emphasized that the Earth’s evolution is a non-linear process. Thus, we cannot draw direct analogies with Phanerozoic time or purely apply the principle of actualism, which is still widely used by experts in Precambrian geology to study the premetamorphic history of ancient deposits. In both cases, the principles should be adjusted. This article provides a novel technique for reconstructing geodynamic regimes of protolith formation in the early Precambrian. The technique identifies changing trends in geodynamic regimes during the formation of the Archean structural and compositional complexes in the Kola region. These trends fit into the earlier suggested general scheme of their formation, thus enhancing its reliability. The metallogeny of the ore areas is specified. The results of the geodynamic reconstructions explain most of the location patterns of minerals within the Kola region. Thus, the authors consider the metallogenic forecast based on geodynamic reconstructions to be a promising trend for further research.

Keywords: geodynamic evolution; evolution; structural compositional; compositional complexes; metallogeny; russian arctic

Journal Title: Minerals
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.