LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crystallization Behaviour of Iron-Hydroxide Sulphates by Aging under Ambient Temperature Conditions

Photo from wikipedia

The crystallization behaviour of jarosite and schwertmannite has been studied by precipitation-aging experiments performed using different parent-solution concentrations at acidic conditions and ambient temperature. Schwertmannite exhibits low crystallinity and is… Click to show full abstract

The crystallization behaviour of jarosite and schwertmannite has been studied by precipitation-aging experiments performed using different parent-solution concentrations at acidic conditions and ambient temperature. Schwertmannite exhibits low crystallinity and is the only mineral identified during low-concentration (LC) experiments. However, in high-concentration (HC) experiments, a relatively rapid Ostwald ripening process leads to the transformation of schwertmannite into natrojarosite. The presence of sodium modifies the morphology and stability of the obtained phases. TEM observations reveal that schwertmannite particles consist of disoriented nanodomains (~6 nm) spread in an amorphous mass. In contrast, natrojarosite particles exhibit a single-domain, highly crystalline core, with the crystallinity decreasing from core to rim. The thermal behaviour of these phases depends on both their composition and their degree of crystallinity. TG and DTG analyses show that, below 500 °C, the amount of structural water is clearly higher in schwertmannite than in natrojarosite. The present results highlight the role of the ripening processes in epigenetic conditions and could be important in interpreting the formation of jarosite in Earth and Martian surface environments.

Keywords: iron hydroxide; ambient temperature; behaviour iron; crystallization behaviour

Journal Title: Minerals
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.