Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of… Click to show full abstract
Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and, hence, the structure of the crust of the Earth during such processes at metamorphism, metasomatism, and weathering. In recent years, focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical techniques, such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, advanced synchrotron-based applications, complemented by molecular simulations, to confirm or predict the results of experimental studies. In particular, the development of analytical methods that allow direct observations of mineral–fluid reactions at the nanoscale have revealed new and significant aspects of the kinetics and mechanisms of reactions taking place in fundamental mineral–fluid systems. These experimental and computational studies have enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions, as well as the kinetics of these processes, and, hence, to enhance our ability to predict potential mineral behavior. In this Special Issue “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.
               
Click one of the above tabs to view related content.