LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mineralogical and Chemical Characterization of Zr-REE-Nb Ores from Khalzan Buregtei (Mongolia)—Approaches to More Efficient Extraction of Rare Metals from Alkaline Granitoids

Photo by viazavier from unsplash

Alkaline rocks are worldwide observed as hosts for rare metal (Zr-REE-Nb) minerals. The classification of the ore bearing rock type is challenging due to the fact that textures and mineral… Click to show full abstract

Alkaline rocks are worldwide observed as hosts for rare metal (Zr-REE-Nb) minerals. The classification of the ore bearing rock type is challenging due to the fact that textures and mineral assemblage are obscured by post-magmatic alteration. In addition, the alteration causes fine and intricate intergrowth of the ore minerals with associated gangue. Hence, intensive comminution is necessary to liberate the ore minerals, which is one parameter hampering the economical use of this deposit type. This study provides a quantitative mineralogical investigation of the ore bearing rock suite at Khalzan Buregtei as an example of rare metal deposits. R1-R2 multication parameters are shown to be highly appropriate as quantitative mineralogical indicators based on readily available major element datasets to visualize and quantify alteration types of the ore bearing rock suite. The ore minerals were found to be associated with a cluster-forming assemblage of post-magmatic phases. Automated mineralogy was applied to quantify the textural properties of the ore mineral clusters. This finding permits efficient pre-concentration of rare metal ore at coarser particle size fraction, requiring less energy consuming comminution.

Keywords: rare metal; khalzan buregtei; ore bearing; ore minerals; bearing rock; mineralogical chemical

Journal Title: Minerals
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.