LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zero-Bias Visible to Near-Infrared Horizontal p-n-p TiO2 Nanotubes Doped Monolayer Graphene Photodetector

Photo from wikipedia

We present a p-n-p monolayer graphene photodetector doped with titanium dioxide nanotubes for detecting light from visible to near-infrared (405 to 1310 nm) region. The built-in electric field separates the… Click to show full abstract

We present a p-n-p monolayer graphene photodetector doped with titanium dioxide nanotubes for detecting light from visible to near-infrared (405 to 1310 nm) region. The built-in electric field separates the photo-induced electrons and holes to generate photocurrent without bias voltage, which allows the device to have meager power consumption. Moreover, the detector is very sensitive to the illumination area, and we analyze the reason using the energy band theory. The response time of the detector is about 30 ms. The horizontal p-n-p device is a suitable candidate in zero-bias optoelectronic applications.

Keywords: monolayer graphene; visible near; near infrared; zero bias; graphene photodetector

Journal Title: Molecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.