LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid Advanced Oxidation Processes Involving Ultrasound: An Overview

Photo by itfeelslikefilm from unsplash

Sonochemical oxidation of organic pollutants in an aqueous environment is considered to be a green process. This mode of degradation of organic pollutants in an aqueous environment is considered to… Click to show full abstract

Sonochemical oxidation of organic pollutants in an aqueous environment is considered to be a green process. This mode of degradation of organic pollutants in an aqueous environment is considered to render reputable outcomes in terms of minimal chemical utilization and no need of extreme physical conditions. Indiscriminate discharge of toxic organic pollutants in an aqueous environment by anthropogenic activities has posed major health implications for both human and aquatic lives. Hence, numerous research endeavours are in progress to improve the efficiency of degradation and mineralization of organic contaminants. Being an extensively used advanced oxidation process, ultrasonic irradiation can be utilized for complete mineralization of persistent organic pollutants by coupling/integrating it with homogeneous and heterogeneous photocatalytic processes. In this regard, scientists have reported on sonophotocatalysis as an effective strategy towards the degradation of many toxic environmental pollutants. The combined effect of sonolysis and photocatalysis has been proved to enhance the production of high reactive-free radicals in aqueous medium which aid in the complete mineralization of organic pollutants. In this manuscript, we provide an overview on the ultrasound-based hybrid technologies for the degradation of organic pollutants in an aqueous environment.

Keywords: organic pollutants; oxidation; aqueous environment; advanced oxidation; pollutants aqueous

Journal Title: Molecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.