LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Layered Extraction and Adsorption Performance of Extracellular Polymeric Substances from Activated Sludge in the Enhanced Biological Phosphorus Removal Process

Photo from wikipedia

A large amount of phosphorus was found in the extracellular polymeric substances (EPS) of activated sludge used in enhanced biological phosphorus removal (EBPR), so the role of EPS and extracellular… Click to show full abstract

A large amount of phosphorus was found in the extracellular polymeric substances (EPS) of activated sludge used in enhanced biological phosphorus removal (EBPR), so the role of EPS and extracellular phosphorus in EBPR should not be neglected. The composition and properties of tightly bound EPS (TB-EPS) and loosely bound EPS (LB-EPS) were significantly different, and it was necessary to study the adsorption performance of EPS through the fractionating of activated sludge into LB-EPS, TB-EPS and microbial cells. In this study, the adsorption performance of LB-EPS and TB-EPS for phosphate was explored by extracting LB-EPS and TB-EPS via sonication and cation exchange resin (CER), respectively. The results indicated that the sonication-CER method was an efficient and reliable extraction method for EPS with a synergistic effect. The performance of EPS in the adsorption/complexing of phosphate was excellent because of its abundant functional groups. Specifically, the type and content of metal elements and functional groups in TB-EPS were much greater than those in LB-EPS, which led to the key role of TB-EPS in the adsorption/complexing of phosphate. Finally, a metabolic model for EBPR with consideration of the adsorption performance of LB-EPS and TB-EPS was proposed.

Keywords: adsorption; phosphorus; eps eps; activated sludge; performance; adsorption performance

Journal Title: Molecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.