Myricetin (Myr) is a phytochemical with many functional properties. However, its hydrophobicity, low bioavailability, and stability limit its application. In this study, octadecanoate oat β-glucan (OGE) was synthesized and gained… Click to show full abstract
Myricetin (Myr) is a phytochemical with many functional properties. However, its hydrophobicity, low bioavailability, and stability limit its application. In this study, octadecanoate oat β-glucan (OGE) was synthesized and gained recognition as a self-assembled micelle forming a polymer with a critical micelle concentration (CMC) of 59.4 μg/mL. The Myr-loaded OGE micelle was then prepared and characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), X-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FT-IR) spectra. The water solubility of Myr was greatly enhanced by forming the Myr/OGE inclusion complex. Consequently, compared to free Myr, the retention of Myr in Myr-loaded OGE micelle was effectively increased during the intestinal digestion phase, and its antioxidant activity was also improved. Overall, our findings demonstrated the potential applications of OGE polymer for the development of prospective micelle in health food, cosmetics, and pharmaceutical fields because they can aid in the delivery of hydrophobic functional compounds like Myr.
               
Click one of the above tabs to view related content.