LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Realization of Rapid Large-Size 3D Printing Based on Full-Color Powder-Based 3DP Technique

Photo from wikipedia

The powder-based 3DP (3D printing) technique has developed rapidly in creative and customized industries on account of it’s uniqueness, such as low energy consumption, cheap consumables, and non-existent exhaust emissions.… Click to show full abstract

The powder-based 3DP (3D printing) technique has developed rapidly in creative and customized industries on account of it’s uniqueness, such as low energy consumption, cheap consumables, and non-existent exhaust emissions. Moreover, it could actualize full-color 3D printing. However, the printing time and size are both in need of upgrade using ready printers, especially for large-size 3D printing objects. Given the above issues, the effects of height and monolayer area on printing time were explored and the quantitative relationship was given in this paper conducted on the specimens with a certain gradient. On this basis, an XYX rotation method was proposed to minimize the printing time. The mechanical tests were conducted with three impregnation types as well as seven printing angles and combined with the characterization of surface structure based on the scanning electron microscope (SEM) digital images to explore the optimum parameters of cutting-bonding frame (CBF) applied to powder-based 3D printing. Then, four adhesives were compared in terms of the width of bonded gap and chromatic aberration. The results revealed that ColorBond impregnated specimens showed excellent mechanical properties which reached maximum when printed at 45° to Z axis, and α-cyanoacrylate is the most suitable adhesive to bond full-color powder-based models. Finally, an operation technological process was summarized to realize the rapid manufacturing of large-size full-color 3D printed objects.

Keywords: printing; full color; size; powder based

Journal Title: Molecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.