LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Mo Dispersion on the Catalytic Properties and Stability of Mo–Fe Catalysts for the Partial Oxidation of Methanol

Photo by sxy_selia from unsplash

Mo–Fe catalysts with different Mo dispersions were synthesized with fast (Cat-FS, 600 r·min−1) or slow stirring speed (Cat-SS, 30 r·min−1) by the coprecipitation method. Improving the stirring speed strengthened the… Click to show full abstract

Mo–Fe catalysts with different Mo dispersions were synthesized with fast (Cat-FS, 600 r·min−1) or slow stirring speed (Cat-SS, 30 r·min−1) by the coprecipitation method. Improving the stirring speed strengthened the mixing of the solution and increased the dispersion of particles in the catalyst, which exhibited favorable activity and selectivity. The byproduct (dimethyl ether (DME)) selectivity increased from 2.3% to 2.8% with Cat-SS, while it remained unchanged with Cat-FS in a stability test. The aggregation of particles and thin Mo-enriched surface layer decreased the catalyst surface area and slowed down the reoxidation of reduced active sites with Cat-SS, leaving more oxygen vacancies which promoted the formation of DME by the nonoxidative channel.

Keywords: effect dispersion; dispersion catalytic; dispersion; stability; catalytic properties; properties stability

Journal Title: Molecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.