LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and Photophysical Properties of 2,1,3-Benzothiadiazole-Based Phosph(III)azane and Its Complexes

Photo by sxy_selia from unsplash

Here we describe the synthesis of a novel N,N’-bis(2,1,3-benzothiadiazol-4-yl)-1-phenylphosphanediamine (H2L) and its zinc (II) and copper (I) coordination compounds [Zn2L2]·nC7H8 (1·nC7H8), [Zn2(H2L)2Cl4]·nC7H8 (2·nC7H8), and [Cu(H2L)Cl]n·nTHF (3·THF). According to single crystal… Click to show full abstract

Here we describe the synthesis of a novel N,N’-bis(2,1,3-benzothiadiazol-4-yl)-1-phenylphosphanediamine (H2L) and its zinc (II) and copper (I) coordination compounds [Zn2L2]·nC7H8 (1·nC7H8), [Zn2(H2L)2Cl4]·nC7H8 (2·nC7H8), and [Cu(H2L)Cl]n·nTHF (3·THF). According to single crystal X-ray diffraction analysis, H2L ligand and its deprotonated species exhibit different coordination modes. An interesting isomerism is observed for the complexes [Zn2(H2L)2Cl4] (2a and 2b) that differ by the arrangement of H2L. Both complexes possess internal cavities capable of incorporating toluene molecules. Upon toluene release, the geometry of 2b changes substantially, while that of 2a changes slightly. Due to the diverse structures, the compounds 1–3 reveal different photophysical properties. These results are discussed based on previously reported studies and DFT (density functional theory) calculations.

Keywords: based phosph; properties benzothiadiazole; benzothiadiazole based; h2l; structural photophysical; photophysical properties

Journal Title: Molecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.