Essential oils are complex mixtures of strongly active compounds, very volatile and sensitive to light, oxygen, moisture and temperature. Loading inside nanocarriers can be a strategy to increase their stability… Click to show full abstract
Essential oils are complex mixtures of strongly active compounds, very volatile and sensitive to light, oxygen, moisture and temperature. Loading inside nanocarriers can be a strategy to increase their stability and successfully use them in therapy. In the present study, a commercial Melissa officinalis L. (Lamiaceae) essential oil (MEO) was analyzed by gas chromatography-mass spectrometry, loaded inside glycerosomes (MEO-GS) and evaluated for its anti-herpetic activity against HSV type 1. MEO-GS analyses were prepared by the thin layer evaporation method and they were characterized by light scattering techniques, determining average diameter, polydispersity index and ζ-potential. By transmission electron microscopy, MEO-GS appeared as small nano-sized vesicles with a spherical shape. MEO encapsulation efficiency inside glycerosomes, in terms of citral and β-caryophyllene, was found to be ca. 63% and 76% respectively, and MEO release from glycerosomes, performed by dialysis bag method, resulted in less than 10% within 24h. In addition, MEO-GS had high chemical and physical stability during 4 months of storage. Finally, MEO-GS were very active in inhibiting HSV type 1 infection of mammalian cells in vitro, without producing cytotoxic effects. Thus, MEO-GS could be a promising tool in order to provide a suitable anti-herpetic formulation.
               
Click one of the above tabs to view related content.