To evaluate the contributions of 3-methylbutanal, 2-methylbutanal, 2-methylpropanal, and benzaldehyde in cheddar cheese models, the threshold values, optimal concentration ranges, and perceptual actions of these compounds were determined at various… Click to show full abstract
To evaluate the contributions of 3-methylbutanal, 2-methylbutanal, 2-methylpropanal, and benzaldehyde in cheddar cheese models, the threshold values, optimal concentration ranges, and perceptual actions of these compounds were determined at various concentrations. The thresholds for 3-methylbutanal, 2-methylbutanal, 2-methylpropanal, and benzaldehyde in the cheese matrix were 150.31, 175.39, 150.66, and 500.21 μg/kg, respectively, which were significantly higher than the corresponding values in water. The optimal concentration ranges of these aldehydes were determined as 150–300, 175–325, 150–350, and 500–1500 μg/kg, respectively. Based on the results of the threshold method and Feller’s model, five binary mixtures were found to have synergistic effects, and only the pair of 2-methylpropanal and benzaldehyde was determined to have a masking effect. In addition, the synergistic olfactory effects between the four ternary mixtures and the quaternary mixture of these aldehydes were also assesSsed using Feller’s model. In a σ-τ plot analysis, synergism was usually observed when these odor pairs were at their threshold levels. In summary, the results suggested that perceptual interactions among these aldehydes exist in a cheese model variably with different concentrations and threshold ratios. This study will be helpful to a further understanding of the nutty aroma and improving the aroma quality of cheddar cheese.
               
Click one of the above tabs to view related content.