Epigenetic modifications play a key role in gene regulation and expression and are involved in numerous cellular processes. Due to the limited research on nucleosides in Parkinson’s disease (PD), it… Click to show full abstract
Epigenetic modifications play a key role in gene regulation and expression and are involved in numerous cellular processes. Due to the limited research on nucleosides in Parkinson’s disease (PD), it is very important to consider epigenetic factors and their role in the development of PD. The aim of this study was to investigate and compare the levels of modified nucleosides, such as O-methylguanosine, N6-methyl-2′-deoxyadenosine, 1-methyladenosine, 1-methylguanine, 7-methylguanine, 3-methyladenine and 7-methylguanosine in the urine of Parkinson’s disease (PD) patients and the control group, and to verify that the results obtained differ in a subgroup of patients with parkinsonian syndromes. The study group comprised 18 patients with diagnosed idiopathic Parkinson’s disease and four parkinsonian syndromes. The control group consisted of 30 age- and sex-matched neurological patients without confirmation by neuroimaging brain damage and extrapyramidal symptoms. The levels of nucleosides were determined by validated liquid chromatography coupled with the mass spectrometry (LC-MS/MS) method using the multiple reaction monitoring (MRM) mode. Lower levels of O-methylguanosine, 3-methyladenine, 1-methylguanine, N6-methyl-2′-deoxyadenosine and a higher level of 7-methylguanine in the urine of 22 PD patients were observed. Moreover, elevated levels of 1-methyladenosine, 7-methylguanine, and O-methylguanosine were observed in the parkinsonian syndrome subgroup. These preliminary results may indicate that modified nucleosides describe metabolic disturbances in the metabolism of purine, which was the most severely affected pathway that mediated the detrimental effects of neuroinflammation on PD.
               
Click one of the above tabs to view related content.