LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Efficient Ag3PO4/g-C3N4 Z-Scheme Photocatalyst for Its Enhanced Photocatalytic Performance in Degradation of Rhodamine B and Phenol

Photo from wikipedia

Ag3PO4/g-C3N4 heterojunctions, with different g-C3N4 dosages, were synthesized using an in situ deposition method, and the photocatalytic performance of g-C3N4/Ag3PO4 heterojunctions was studied under simulated sunlight conditions. The results revealed… Click to show full abstract

Ag3PO4/g-C3N4 heterojunctions, with different g-C3N4 dosages, were synthesized using an in situ deposition method, and the photocatalytic performance of g-C3N4/Ag3PO4 heterojunctions was studied under simulated sunlight conditions. The results revealed that Ag3PO4/g-C3N4 exhibited excellent photocatalytic degradation activity for rhodamine B (Rh B) and phenol under the same light conditions. When the dosage of g-C3N4 was 30%, the degradation rate of Rh B at 9 min and phenol at 30 min was found to be 99.4% and 97.3%, respectively. After five cycles of the degradation experiment for Rh B, g-C3N4/Ag3PO4 still demonstrated stable photodegradation characteristics. The significant improvement in the photocatalytic activity and stability of g-C3N4/Ag3PO4 was attributed to the rapid charge separation between g-C3N4 and Ag3PO4 during the Z-scheme charge transfer and recombination process.

Keywords: degradation; photocatalytic performance; phenol; c3n4; ag3po4 c3n4

Journal Title: Molecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.