LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Influence of Dopant Concentration on Optical-Electrical Features of Quantum Dot-Sensitized Solar Cell

Photo by sxy_selia from unsplash

In this study, TiO2/CdS/CdxCu1−xSe, TiO2/CdS/CdxMn1−xSe, and TiO2/CdS/CdxAg2−2xSe thin films were synthesized by chemical bath deposition for the fabrication of photoanode in quantum-dot-sensitized solar cells. As a result, the structural properties… Click to show full abstract

In this study, TiO2/CdS/CdxCu1−xSe, TiO2/CdS/CdxMn1−xSe, and TiO2/CdS/CdxAg2−2xSe thin films were synthesized by chemical bath deposition for the fabrication of photoanode in quantum-dot-sensitized solar cells. As a result, the structural properties of the thin films have been studied by X-ray diffraction, which confirmed the zinc Blende structure in the samples. The optical films were researched by their experimental absorption spectra with different doping concentrations. Those results were combined with the Tauc correlation to estimate the absorption density, the band gap energy, valence band and conduction band positions, steepness parameter, and electron–phonon interaction. Furthermore, the electrical features, electrochemical impedance spectrum and photocurrent density curves were carried out. The result was used to explain the enhancing performance efficiency.

Keywords: tio2 cds; sensitized solar; quantum dot; influence dopant; electrical features; dot sensitized

Journal Title: Molecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.