In the current work, a simple, economical, accurate, and precise HPLC method with UV detection was developed to quantify Favipiravir (FVIR) in spiked human plasma using acyclovir (ACVR) as an… Click to show full abstract
In the current work, a simple, economical, accurate, and precise HPLC method with UV detection was developed to quantify Favipiravir (FVIR) in spiked human plasma using acyclovir (ACVR) as an internal standard in the COVID-19 pandemic time. Both FVIR and ACVR were well separated and resolved on the C18 column using the mobile phase blend of methanol:acetonitrile:20 mM phosphate buffer (pH 3.1) in an isocratic mode flow rate of 1 mL/min with a proportion of 30:10:60 %, v/v/v. The detector wavelength was set at 242 nm. Maximum recovery of FVIR and ACVR from plasma was obtained with dichloromethane (DCM) as extracting solvent. The calibration curve was found to be linear in the range of 3.1–60.0 µg/mL with regression coefficient (r2) = 0.9976. However, with acceptable r2, the calibration data’s heteroscedasticity was observed, which was further reduced using weighted linear regression with weighting factor 1/x. Finally, the method was validated concerning sensitivity, accuracy (Inter and Intraday’s % RE and RSD were 0.28, 0.65 and 1.00, 0.12 respectively), precision, recovery (89.99%, 89.09%, and 90.81% for LQC, MQC, and HQC, respectively), stability (% RSD for 30-day were 3.04 and 1.71 for LQC and HQC, respectively at −20 °C), and carry-over US-FDA guidance for Bioanalytical Method Validation for researchers in the COVID-19 pandemic crisis. Furthermore, there was no significant difference for selectivity when evaluated at LLOQ concentration of 3 µg/mL of FVIR and relative to the blank.
               
Click one of the above tabs to view related content.