LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of Quaternary Amphiphilic Block Copolymer PMA-b-P (NVP/MAH/St) and Its Application in Surface Modification of Aluminum Nitride Powders

Photo from wikipedia

Poly(methyl acrylate)-b-poly(N-vinyl pyrrolidone/maleic anhydride/styrene) (PMA-b-P (NVP/MAH/St)) quaternary amphiphilic block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) was used to improve the anti-hydrolysis and dispersion properties of aluminum nitride (AIN)… Click to show full abstract

Poly(methyl acrylate)-b-poly(N-vinyl pyrrolidone/maleic anhydride/styrene) (PMA-b-P (NVP/MAH/St)) quaternary amphiphilic block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) was used to improve the anti-hydrolysis and dispersion properties of aluminum nitride (AIN) powders that were modified by copolymers. Its structure was characterized by Fourier transform infrared spectroscopy (FT-IR) and Hydrogen nuclear magnetic spectroscopy (1H-NMR). The results demonstrate that the molecular weight distribution of the quaternary amphiphilic block copolymers is 1.35–1.60, which is characteristic of controlled molecular weight and narrow molecular weight distribution. Through charge transfer complexes, NVP/MAH/St produces a regular alternating arrangement structure. After being treated with micro-crosslinking, AlN powder modified by copolymer PMA-b-P(NVP/MAH/St) exhibits outstanding resistance to hydrolysis and can be stabilized in hot water at 50 °C for more than 14 h, and the agglomeration of powder particles was improved remarkably.

Keywords: amphiphilic block; quaternary amphiphilic; nvp mah; pma nvp

Journal Title: Molecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.