LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Simple and Sensitive Nanogold RRS/Abs Dimode Sensor for Trace As3+ Based on Aptamer Controlled Nitrogen Doped Carbon Dot Catalytic Amplification

Photo from wikipedia

Using citric acid (CA) and ethylenediamine (EDA) as precursors, stable nitrogen-doped carbon dots (CD) nanosols were prepared by microwave procedure and characterized in detail. It was found that CDNs catalyze… Click to show full abstract

Using citric acid (CA) and ethylenediamine (EDA) as precursors, stable nitrogen-doped carbon dots (CD) nanosols were prepared by microwave procedure and characterized in detail. It was found that CDNs catalyze ethanol (Et)-HAuCl4 to generate gold nanoparticles (AuNPs), which have strong surface plasmon resonance, Rayleigh scattering, (RRS) and a surface plasmon resonance (SPR) absorption (Abs) effect at 370 nm and 575 nm, respectively. Compled the new catalytic amplification indicator reaction with the specific As3+ aptamer reaction, a new RRS/Abs dual-mode aptamer sensor for the assay of trace As3+ was developed, based on the RRS/Abs signals increasing linearly with As3+ increasing in the ranges of 5–250 nmol/L and 50−250 nmol/L, whose detection limits were 0.8 nmol/L and 3.4 nmol/L As3+, respectively. This analytical method has the advantages of high selectivity, simplicity, and rapidity, and it has been successfully applied to the detection of practical samples.

Keywords: nitrogen doped; doped carbon; as3; rrs abs; aptamer

Journal Title: Molecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.