LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cyclodextrins Initiated Ring-Opening Polymerization of Lactide Using 4-Dimethylaminopyridine (DMAP) as Catalyst: Study of DMAP/β-CD Inclusion Complex and Access to New Structures

Photo from wikipedia

Cyclodextrins (CDs) are cyclic oligosaccharides used in many fields. Grafting polymers onto CDs enables new structures and applications to be obtained. Polylactide (PLA) is a biobased, biocompatible aliphatic polyester that… Click to show full abstract

Cyclodextrins (CDs) are cyclic oligosaccharides used in many fields. Grafting polymers onto CDs enables new structures and applications to be obtained. Polylactide (PLA) is a biobased, biocompatible aliphatic polyester that can be grafted onto CDs by -OH-initiated ring-opening polymerization. Using 4-dimethylaminopyridine (DMAP) as an organocatalyst, a quantitative functionalization is reached on native α-, β-, γ- and 2,3-dimethyl- β-cyclodextrins. Narrow molecular weight distributions are obtained with the native CDs (dispersity < 1.1). The DMAP/β-CD combination is used as a case study, and the formation of an inclusion complex (1/1) is shown for the first time in the literature, which is fully characterized by NMR. The inclusion of DMAP into the cavity occurs via the secondary rim of the β-CD and the association constant (Ka) is estimated to be 88.2 M−1. Its use as an initiator for ring-opening polymerization leads to a partial functionalization efficiency, and thus a more hydrophilic β-CD-PLA conjugate than that obtained starting from native β-CD. Polymerization results including also the use of the adamantane/β-CD inclusion complex as an initiator suggest that inclusion of the DMAP catalyst into the CD may not occur during polymerization reactions. Rac-lactide does not form an inclusion complex with β-CD.

Keywords: inclusion; ring opening; polymerization; inclusion complex; opening polymerization; dmap

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.