LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unique Properties of Heme Binding of the Porphyromonas gingivalis HmuY Hemophore-like Protein Result from the Evolutionary Adaptation of the Protein Structure

Photo by anniespratt from unsplash

To acquire heme, Porphyromonas gingivalis uses a hemophore-like protein (HmuY). HmuY sequesters heme from host hemoproteins or heme-binding proteins produced by cohabiting bacteria, and delivers it to the TonB-dependent outer-membrane… Click to show full abstract

To acquire heme, Porphyromonas gingivalis uses a hemophore-like protein (HmuY). HmuY sequesters heme from host hemoproteins or heme-binding proteins produced by cohabiting bacteria, and delivers it to the TonB-dependent outer-membrane receptor (HmuR). Although three-dimensional protein structures of members of the novel HmuY family are overall similar, significant differences exist in their heme-binding pockets. Histidines (H134 and H166) coordinating the heme iron in P. gingivalis HmuY are unique and poorly conserved in the majority of its homologs, which utilize methionines. To examine whether changes observed in the evolution of these proteins in the Bacteroidetes phylum might result in improved heme binding ability of HmuY over its homologs, we substituted histidine residues with methionine residues. Compared to the native HmuY, site-directed mutagenesis variants bound Fe(III)heme with lower ability in a similar manner to Bacteroides vulgatus Bvu and Tannerella forsythia Tfo. However, a mixed histidine-methionine couple in the HmuY was sufficient to bind Fe(II)heme, similarly to T. forsythia Tfo, Prevotella intermedia PinO and PinA. Double substitution resulted in abolished heme binding. The structure of HmuY heme-binding pocket may have been subjected to evolution, allowing for P. gingivalis to gain an advantage in heme acquisition regardless of environmental redox conditions.

Keywords: hmuy; heme binding; heme; porphyromonas gingivalis; protein

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.