LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Different Microplastic Forms on pH and Mobility of Cu2+ and Pb2+ in Soil

Photo from wikipedia

Microplastics, due to their surface properties, porosity and electrostatic interactions have a high affinity for cations sorption from the aqueous phase. As soil is a complex matrix, interactions between microplastics,… Click to show full abstract

Microplastics, due to their surface properties, porosity and electrostatic interactions have a high affinity for cations sorption from the aqueous phase. As soil is a complex matrix, interactions between microplastics, soil constituents and heavy metals (HM) may modify the soil microenvironment for heavy metal mobilization/immobilization processes. In order to better understand the problem, three commonly found forms of microplastics in soil (fibers, fragments and microbeads) were mixed with Cu2+- or Pb2+-contaminated soil and incubated at 22 °C for 180 days. In soil samples pH and the content of water and acid exchangeable species of metals were analyzed. The results of this study showed that the presence of microplastics in HM-contaminated soil affected metal speciation, increasing the amount of easily exchangeable and potentially bioavailable forms of Cu2+ or Pb2+ in the tested soil. Soil pH also increased, confirming that microplastic particles affect soil properties relevant to the sorption/desorption process of metal cations. Overall, the smallest microplastic particles (≤1 mm), such as fibers or glitter microbeads, had a greater impact on the change in the sorption and desorption conditions of metals in tested soil than larger particles. The findings of our study show that microplastic form, shape and size should be considered as important factors that influence the soil properties and mobility of heavy metals in soil.

Keywords: cu2 pb2; different microplastic; soil; influence different; microplastic forms

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.