LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Optimization of Methylcellulose-Based Nanoemulgel Loaded with Nigella sativa Oil for Oral Health Management: Quadratic Model Approach

Photo from wikipedia

The present study aimed to develop a local dental nanoemulgel formulation of Nigella sativa oil (NSO) for the treatment of periodontal diseases. NSO purchased from a local market was characterized… Click to show full abstract

The present study aimed to develop a local dental nanoemulgel formulation of Nigella sativa oil (NSO) for the treatment of periodontal diseases. NSO purchased from a local market was characterized using a GC–MS technique. A nanoemulsion containing NSO was prepared and incorporated into a methylcellulose gel base to develop the nanoemulgel formulation. The developed formulation was optimized using a Box–Behnken statistical design (quadratic model) with 17 runs. The effects of independent factors, such as water, oil, and polymer concentrations, were studied on two dependent responses, pH and viscosity. The optimized formulation was further evaluated for droplet size, drug release, stability, and antimicrobial efficacy. The developed formulation had a pH of 7.37, viscosity of 2343 cp, and droplet size of 342 ± 36.6 nm. Sustained release of the drug from the gel for up to 8 h was observed, which followed Higuchi release kinetics with non-Fickian diffusion. The developed nanoemulgel formulation showed improved antimicrobial activity compared to the plain NSO. Given the increasing emergence of periodontal diseases and antimicrobial resistance, an effective formulation based on a natural antibacterial agent is warranted as a dental therapeutic agent.

Keywords: formulation; sativa oil; nigella sativa; quadratic model; oil

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.