LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phytochemicals of Avocado Residues as Potential Acetylcholinesterase Inhibitors, Antioxidants, and Neuroprotective Agents

Photo by kimzifi from unsplash

Avocado (Persea americana) is a widely consumed fruit and a rich source of nutrients and phytochemicals. Its industrial processing generates peels and seeds which represent 30% of the fruit. Environmental… Click to show full abstract

Avocado (Persea americana) is a widely consumed fruit and a rich source of nutrients and phytochemicals. Its industrial processing generates peels and seeds which represent 30% of the fruit. Environmental issues related to these wastes are rapidly increasing and likely to double, according to expected avocado production. Therefore, this work aimed to evaluate the potential of hexane and ethanolic peel (PEL-H, PEL-ET) and seed (SED-H, SED-ET) extracts from avocado as sources of neuroprotective compounds. Minerals, total phenol (TPC), total flavonoid (TF), and lipid contents were determined by absorption spectroscopy and gas chromatography. In addition, phytochemicals were putatively identified by paper spray mass spectrometry (PSMS). The extracts were good sources of Ca, Mg, Fe, Zn, ω-6 linoleic acid, and flavonoids. Moreover, fifty-five metabolites were detected in the extracts, consisting mainly of phenolic acids, flavonoids, and alkaloids. The in vitro antioxidant capacity (FRAP and DPPH), acetylcholinesterase inhibition, and in vivo neuroprotective capacity were evaluated. PEL-ET was the best acetylcholinesterase inhibitor, with no significant difference (p > 0.05) compared to the control eserine, and it showed neither preventive nor regenerative effect in the neuroprotection assay. SED-ET demonstrated a significant protective effect compared to the control, suggesting neuroprotection against rotenone-induced neurological damage.

Keywords: acetylcholinesterase inhibitors; phytochemicals avocado; residues potential; avocado residues; acetylcholinesterase; potential acetylcholinesterase

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.